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The continuous-time random walk of Montroll and Weiss has been modified by 
Scher and Lax to include a coupled spatial-temporal memory. We treat novel 
cases for the random walk and the corresponding generalized master equation 
when combinations of both spatial, and temporal moments of the memory are 
infinite. The asymptotic properties of the probability distribution for being at 
any lattice site as a function of time and its variance are calculated. The 
resulting behavior includes localized, diffusive, wavelike, and Levy's stabte laws 
for the appropriate scaled variable. We show that an infinite mean waiting time 
can lead to long time diffusive behavior, while a finite mean waiting time is not 
sufficient to ensure the same. 

KEY WORDS: Random walk; coupled memory; infinite moments; stable 
distributions. 

1. I N T R O D U C T I O N  

R a n d o m  walks lie at the heart of much analysis in stochastic processes. In  

addi t ion a large variety of physical p h e n o m e n a  involving transport,  config- 

ura t ional  statistics, f luctuations in the state of a system, etc. can be mapped  
onto  a r a n d o m  walk problem. The appropriate  r andom walk may, however, 

be semi-Markovian,  non-Markov ian ,  involve internal  states, a coupled 
memory,  a high n u m b e r  of dimensions,  a defective lattice, difficult bound-  

ary condit ions,  or other complications.  The r a n d o m  walk need not  take 
place in a real posit ional  space and  the transit ions (events) need not  
represent actual  physical jumps .  Recent  review articles cover many  of these 
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cases, (1-3) and Montroll combines several of the above conditions in a 
random walk approach to the kinetic Ising model. (4) It is the purpose of the 
present paper to study the behavior of a coupled spatial-temporal memory 
random walk especially in the novel case when both spatial and temporal 
moments are infinite. 

An important random variable representing the random walk is the 

sum S N, where 

S N  = X 1 -1- �9 �9 . ,-t- X N (1) 

and the X~ are identically distributed random variables each with mean /z 
and variance 0 2 . If the variance is finite then the central limit theorem cart 
be invoked to obtain the Gaussian probability density, say in one dimen- 
sion, 

f(x) = lira Prob. [x  < SN/~/-N < x + dx] 
N---> ~ 

= (2~ro 2)- 1/2exp( - x2/2o 2) (2) 

We have set/x = 0 and will do so for the rest of the analysis because one 
can define a new variable Y = X -  ~ which has a zero mean. Also we will 
only discuss one-dimensional cases here. 

One may further introduce a probability density +(t) governing the 
time between the events X~, and study the sum Su(0, where 

SN~,)=X l +  - . .  +XN( 0 (3) 

The random variable N(t) represents the number of events which have 
occurred in the time interval [0, t]. If t)(t) has a finite first moment t- and 
0 2 < ~ ,  then again the central limit theorem can be used to show that (m) 

f (x , t )= lim Prob. [x  < SN~o/~ < x + dx] 
t---> ~c) 

= (4~rDt)-l/2exp( - x2/4Dt) (4) 

where D = o2/2[. 
At this point it may appear that Gaussian behavior is inevitable when 

summing identically distributed random variables. However, the Gaussian 
limit can be avoided when one of the three eases below occurs: 

1. The second moment o 2 of the probability density p(X) of the 
random variable X is infinite. 

2. The probability density +(t) has an infinite first moment. 
3. A combination of infinite moments of both p(X) and +(t) occur. 
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The first case was studied by P. Levy, (5~ who showed that f (x)  
limN_~ Prob. (x < SN/N I/B < x + dx) has the simple form in Fourier 

space (x ~ k) 

f (k)  = exp( -b lk l~ ) ,  0 </3 <. 2 (5) 

with b a real positive constant when/x = O. Two well-known examples are 
the Cauchy distribution 

1 1 , /3 = 1 ( 6 )  
f (x )  = ~ (x/b)2 + 1 

and the Smirnov distribution/3 -- �89 

1 2 ( b 2 '  3/z [ - b  2 ) 
f (x )  - ~[~ b2 -~x ) e x p ~  , x > 0  (7) 

The case/3 = 2 occurs when o z < m and it is the Gaussian distribution. For 
other fl, f (x)  is only known in terms of infinite series. (6~ Properties of 
random walks on lattices with infinite second moments of the single jump 
probability distribution have been given by Gillis and Weiss. (7~ The cluster- 
ing nature of the random walk paths for stable distributions has recently 
been discussed. (18~ 

The second case with ~( t )~ t  -l-~, 0 < a < 1, so i =  f~ttp(t)dt = 
has been discussed by Feller (6~ and further analyzed by Montroll and 
Scher (~'9) and by Shlesinger (~~ to model charge transfer in amorphous 
media, such as xerographic films. Such a waiting time density will lead to a 
zero dc conductivity in the decoupled Scher-Lax (~l) model of conduction 
and the name "localization condition" is applied. Essentially, the central 
limit theorem breaks down, even though the X's have finite moments, 
because there is a high probability that none or just a few events have 
occurred by any time t. 

Both cases 1 and 2 have been reviewed by Montroll and West (1) and 
by Weiss and Rubin. (3~ It is the purpose of this manuscript to further the 
study of random walk behavior by considering case 3, where both spatial 
and temporal moments are infinite. 

2. R A N D O M  W A L K  F R A M E W O R K  

We chose to analyze our stochastic process as a random walk on an 
infinite periodic lattice with all lattice sites being equivalent and we wilt 
follow in the spirit of Montroll and Weiss, (13~ and Scher and Lax. (11~ The 
former authors (~3) introduced the continuous-time random walk while the 
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latter authors (11) were the first to use a coupled memory random walk in 
their theory of impurity conduction. We will assume the walker always 
begins at the origin l = 0 at time t --- 0. 

First, we introduce a coupled memory ,t,(l, t), which is a probability 
density governing single transitions, i.e., ~l,(l, t) = probability density that a 
transition of displacement l occurs at a time t after the previous transition. 

The probability qJ(t)dt that a transition occurs in the time interval 
( t, t + act) is given by 

 (t)dt = q,(l,t)a  (8a) 
1 

Furthermore, we require the normalization 

s  1 (Sb) 

The probability density R(I,t) for reaching site l exactly at time t, 
which involves summing over many different paths, can be calculated in 
terms of "I,(l,t), which governs single transitions, by using a recursion 
relation and assuming translational invariance, 

R(l, t)  = ~t'(l , ' r )R( I -  I ' , t -  ,r)dr+ 6(t)8,, 0 (9) 
l 0 

The probability P(/, t) for being at site l at time t is related to R(l, t) by 

R(I, t P(l,t) -- t -  r)d~(r)dr (10) 

where 

#P(r) = 1 - ~ ~"~( l , t )d t  (11) 
/ 

is the probability that no transition occurs in the time interval (0, r). 
Equation (10) takes into account that the walker reached site l at an earlier 
time t -  T, and then no transition takes place in the remaining time r.  
Fourier transforming over the lattice (1 ~ k) and Laplace transforming over 
time (t---) s) one finds (11) with 

P(k, s) =- ~ s  t)eikZe-S' dt 
l 

that 

P(k ' t )  = ~-l[  l - "t'(k,s)l 1 - ~ ( s )  I s  (12) 

where s 1 is the inverse Laplace transform and i f (s )=  ~'(k = 0,s). The 
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second moment of P(t,  t) is given by (l]~ 

( t2( t ) )  = ~ l~e(Z,0 
l 

-- 0k 232 P(k, t) k = 0  

k = O  

In the following sections we will study the possible behaviors of P(I, t) 
and its variance. 

3. DECOUPLED MEMORY 

3.1. Finite Moments 

Let us begin by considering that the memory "t'(1, t) can be decoupled 
into a spatial and a temporal part, 

~(l,  t) = ~p(t)p(l)  (14) 

as discussed in the Introduction. If all the moments of q~(t) and p( l )  exist 
then their Laplace (t~-->s) and Fourier (l~--~ k) transforms have the follow- 
ing expansions: 

~ ( s )  = 1 - b + �89 t 2 s  2 + �9 �9 �9 ( 1 5 a )  

p ( k )  = 1 - �89 12k 2 + ~4 14k4 + "'" (15b) 

As a first example let us choose our lattice with unit bond length, 

Lp (t) = 7~ exp( - At) (16a) 

and 

p(1) = �89 (~,,~ + 6z_ ,) (16b) 
Using Eq. (15) in Eqs. (12) and (13) directly leads to (]4~ 

P(I,  t) = exp(-)~t)It(Xt ) (lYa) 

and for large times 

(12(t))  = 2Dt (17b) 

where I z is the imaginary Bessel function of / th  order and D = M 2 / 2  = ~ / 2  
since ~, i l2p( l )=  1. In the long time limit Eq. (17a) will approach the 
Gaussian distribution (Brownian motion) of Eq. (4). This behavior will be 
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found as long as ~ and [ are finite, as can be seen substituting Eq. (15) into 
Eq. (12) 

lim limP(k,t)--s [-- ] 
t-+oo k-+O " st+ 72k2/2 

= exp[- - (  l "-f/2[)k2t] 

which upon inverse Fourier transforming yields 

lim lira P(I, t)~(4rrDt)-,/2 e x p ( -  12/4Dt) (18) 
t - + ~  l - ~  

3.2. Infinite Spatial Moments 

If [ is finite, but 

1 O < f l < 2  lim p ( l )~  1+~ ' 
Ill 

then l 2 will be infinite, and 

lira p(k)--~l - Alkl ~ (19) 
k ~ 0  

with A a constant, (7} in contrast to the moment expansion, Eq. (15b). This 
will lead to 

lira lim P(k, t ) ~ e x p ( -  A IkIPt/[) (20) 
t--+ oo k--~0 

which is the Fourier transform of a Levy distribution Eq. (5). Not much 
information is gained by studying the second moment, since one arrives at 
using Eq. (13), 

(12(t)) = oo (21) 

because 

a2p( k)/Ok21k=O= OO 

In Section 4, where the memory function ~t'(l, t) is not decoupled, we will 
see how to retain the time dependence of (la(t)) even when the analog, of l 2 

is infinite. 

3.3. Infinite Temporal Moments 

If n o w  12 is finite, but q~(t)~t -1-~, 0 < a < l, so [ is infinite then, 
with c a constant, 

}imqJ(s)~l- cs ~ (22) 
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as opposed to the moment expansion in Eq. (15a). Analyzing Eq. (12) for 
small k and s we find 

p(k,s)_(c,O + (23) 

which in real space has the following form for large l: 

= 
2D l /as~/2 

where D =-~/2c. Returning to a distribution function we have 

I = L  

~(1 /2s )exp  [ - L(s~/D )1/2] (24) 

After inverse Laplace transforming, Eq. (24) has the form of a stable 
distribution S, of order a / 2 ,  of a scaled variable, i.e., 

p(t > L,t)= So/2[t/(CVD) '/~ (25 )  

as has been shown by Tunaley. (12) Of course, for a -- 1, this is an equiva- 
lent way of writing the Gaussian distribution in Eq. (18). Using this 
momentless +(t) in Eq. (13) gives (L~ 

lim (12(t)} = Dt~/F(1 + a) (26) 
t - ~ '  O O  " 

Thus in the decoupled scheme when either 12 or [ are infinite, non- 
Gaussian behavior results. 

4. C O U P L E D  M E M O R Y  

For a specific example of how a coupled memory can arise consider a 
particle which is scattered at random times. Its mean free path is then a 
random variable. The longer the time between scattering events the longer 
will be the mean free path. Translated into random walk terminology, with 
jumps corresponding to collisions, the distance a particle jumps will depend 
on the time since the previous jump. This necessitates a coupled spatial 
temporal memory. 

With a decoupled memory and l 2 infinite we obtained (/2(t)) = oe for 
all t > 0. With a coupled memory it is possible to examine the temporal 
behavior of (12(t)} as it grows in time. Scher and Lax (~) were the first to 
stress that qr(l,t) should not be decoupled and recently Klafter and 
Silbey (15) have shown in a specific and exact case how a coupled memory 
can lead to a crossover between coherent and incoherent exciton transport. 
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Weiss (16) has analyzed coupled memory random walks for cases leading to 
Gaussian distributions and shown how the coupling effects the mean and 
variance, especially when a bias is present. We choose to write the coupled 
memory as 

"I'(l,t) = q~(t)p(l I t) (27a) 

where 

and 

so 

p( l  I l) = 1 (27b) 
l 

fo~+(t)  dt = 1 (27c) 

o = ~ q , ( t , t ) d t =  1 

The probability density ~(t) governs the time between events and 
p( l[ t )  is a conditional probability that the jump (transition) goes a distance 
l given that it takes place a time t after the preceding jump. Of course, if 
p(l[ t) does not depend on time we have a decoupled momory. Note in Eq. 
(27b) we need only a sum over I for the proper normalization. 

First, following Weiss (t6) let us choose ~(t) to have finite moments, 

# (t) = ~ exp( - Xt) 

and choose p(l] t) to behave at long times and distances as 

p ( l l t )  _ 1 e x p ( -  12/4Ot) (28) 
(4~rDt) ~/2 

where 

Then in Eq. (13) 

o2(t) = ~ 1 2 p ( l l  t) = 2Dt 
1 

~2~(k, s ) [ 32p(k[ t ) ]  

~k2lk=o - ~ ~( t )  ~k 2 k=0 

2XD 2D (29) 
= L[X~ - (s + X) 2 "~ X 

The denominator in Eq. (12) is equal to 1/(s2D, so we find asymptotically 

1) )t (30) (12( '))  = ( ~ t -  
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Note that asymptotic in space and time 

, t '(k,s)--~t'(k = O,s) + �89 [ 32'ts(k = O,s) /ak2]k  2 + " ' "  (31) 

~ 1  - s[ + ( D / ~ ) k  2 (32) 

Using Eqs. (30) and (31) in Eq. (12) will yield Gaussian behavior for P(l, t), 
since xI'(k,s) effectively factors into ~p(s)p(k) for small s and k. We want to 
f ind the conditions under which '~(k,s) will not decouple. First, note that 
p( l] t )  was chosen to be a probability distribution with a single jump length 
variance 02(0 growing in time as 2Dt. We could have alternatively chosen 

SO 
p ( l l t  ) = Jl 2 ()kl) (33a) 

O2(t) = ~ l~0(/]/)l = ~2P (k I/)Ok2 k=0~ ~2/22 (33b) 

Since for p( l  t t) we only require normalization with respect to l we could 
choose asymptotically 

[2~rd(t)]l/2 exp 2d(t) (34) 

yielding 

a2(/) = d( l )  

with d(t) any positive function of t. So in general in Eq. (13) 

If at large times 

then 

(3s) 

- a2,I,(k,s) ]l = E[~p(t)d(t)] (36) 

~k2 Ik=o 

+ ( t ) d ( t ) - c t " / r ( , ,  + 1), n > - 1 (37a) 

E[~p(t)d(t)]~cs -~n+') for small s (37b) 

where c is a constant. Equations (37) can be generalized by allowing c to be 
a slowly varying function. In any event Eqs. (37) imply that ~(k,  s) cannot 
be decoupled, i.e., 

c k2 (38) 
lira lim ~I ' (k ,s)~4(s)  2 s ',+l s--~O k--~0 
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The possible behaviors of +(s) were discussed in Section 3, while Eq. (37) 
gives classes of behavior for the second term in the "I~(k,s) expansion Eq. 
(31), when '~(k,s)  cannot be decoupled. If qJ(t)d(t) decays more rapidly 
algebraically then in Eq. (37a) its Laplace transform will asymptotically 
approach a constant (as can be seen by expanding the exponential in the 
Laplace transform) and ~(k,  s) will be decoupled into a ~/(s)p(k), as in Eq. 
(29). 

Consider now the specific case 

~ ( t ) ~ t - l - ~ ,  0 < a < 1 

and 

(39a) 

(39b) d( t ) - - t  m, m > 0 

The mean time t-between jumps is infinite, thus yielding 

d ( 5  = E l S o ( t l i )  = 
l 

In this sense, the mean time between jumps is infinite as well as the average 
mean squared displacement per jump. 

If m > ~, then, asymptotically 

, t ' ( k , s ) ~ l  - as ~ b k 2 (40) 
2 s m-~ 

with a and b constant. Substituting this ff'(k, s) and if(s) = 'Is(k = 0, s) into 
Eq. (13) yields 

(12(t) } - b t "  a r (m + 1) (4l)  

Note for m = 1 the effects of an infinite mean waiting time and an infinite 
second moment jump displacement off-set each other and yield the Brown- 
ian motion result for the mean squared displacement. We have thus 
demonstrated that depending on the coupled memory, t < m is not neces- 
sary to obtain long time diffusive behavior. To see this more clearly we 
examine the asymptotic behavior of P(k ,  s) in Eq. (12) to find 

P ( k , s ) - -  1 ( as~ ) =  s m- '  (42) 
as ~ + bk2/2s  m-~ s s "~ + bk2/2a  

which for m -- 1 is the Gaussian case of Eq. (18). If 2 > m > a, we arrive 
back at the stable distribution of order m / 2  as in Eq. (25) for the scaled 
variable t /12/C If m < a we have q~(k,s) decoupling as in Section 3. 

For m = 2 we have asymptotically with, v; = b /2a ,  

P ( k , s ) -  s2 + v2k2 - 2 s + ivk s irk 
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As discussed by Kadanoff  and Swift, (17) complex poles should lead to wave 
behavior. Inverse Laplace transforming yields 

P(k, t) = cos (~ t )  

and finally inverse Fourier transforming yields (in the continuum limit) 

P( l , t )  = � 8 9  vt) + 3(l  + vt)) (43) 

which represents coherent wave motion. 

As an example with [ finite, but t 2 infinite we choose 

~ ( t ) ~ l / t  2+Y, 0 < y < 1 (44a) 

and 

and 

d ( t ) ~ t  m 

Then asymptotically, if m > 1 + ,/, 

~ ( k ,  s) ~ 1 - s[ bk2 
2 S i n -  1 - v 

(44b) 

(45) 

P ( k , s )  s m- 1-~ (46) 
, ~ - ~  + ( b / 2 i ) ~  2 

For m - l ,  ~< 1 we again obtain Brownian motion. If m - u  = 2 wave 
motion is obtained. This complements the result of Klafter and Silbey (15) 
that t-< oe is not sufficient for a Gaussian behavior. In Ref. 15 it has been 
shown that [ < ~ and a coupled memory may give rise to wave (coherent) 
motion. 

As a last example consider a coupled memory where both l 2 and [ are 
infinite. The quantity q'(k, s = O) which appears in tile study of the proba- 
bility of a random walker returning to its origin, easily exhibits the nature 
of a random walk with both spatial and temporal infinite moments: 

q , (k , ,  = 0) = p B ( k l t ) ~ ( t ) ~ t  

= f0| dt 

= G ( s  = A l k l ~ ) - - I  - c o n s t l k U  (47) 

where we have chosen p( t  I t) to be a fi-stable process, Eq. (5), and 
~b~(t)~t-  ~-~, 0 < a < 1. Thus, we have arrived at a stable process of order 
aft. This is an example of Bochner's (6) subordination technique. 
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GENERALIZED MASTER EQUATION FRAMEWORK 

In the above discussion we have assumed: 

t. Random walks on periodic lattices 
2. '~'(/, t) = +(t)p( l l t  ). 

These assumptions may now be relaxed. 
It has been shown that for a lattice randomly occupied by guest sites 

the average probability (P(I ,  t)) obeys a generalized master equation (t9) 

d (P(I ,  t)) = ~ v s  - l ' , t  - r ) (P( l ' , ' r ) )  (48) 

where M(I  - l', r) is the self-energy, and P(I, t) has been averaged over all 
configurations of the lattice guest sites (for details see Ref. 19). The self- 
energy is translationaUy invariant and so Fourier-Laplace-transforming 
Eq. (48) we find 

( P ( k , s ) )  = Is - M ( k , s ) ]  -1 (49) 

Conservation of probability is equivalent to M ( k  = 0 , s ) =  0. Relations 
between the generalized master equation, Eqs. (48) and (49),and the 
coupled memory random walk used by Scher and Lax, (1J) Eq. (12), have 
been established (15'j9'2~ in a manner similar to the decoupled case(ZJ) : 

1 - r  
"t'(k,s) = ~(s)  + - -  M ( k , s )  (50) 

s 

as can also be seen by equating the right-hand sides of Eqs. (12) and (49). 
Expanding M(k , s )  around k = 0 we obtain 

M ( k , s ) ~ k 2 F ( s )  (51a) 

with 

1 ~ZM(k's)  (51b) 
F ( s ) -  2 Ok 2 

From Eqs. (50), (51), and (36), we see that the choice for xP(l, t), Eqs. (27a) 
and (34), is related to the above derivation in the following way: 

1 - q , ( s )  
F(s)  = E[ , ( t ) d ( t )  ] (52) 

s 

The variance of (P( l ,  t)) is given by 

= - e - ' [  2F(,) 
1 (53) 
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We now classify (12(t)) according to F(s). For long times we find 

I! 
n if F ( s ) ~  - s l-n, 1 > n >/0 

= if F ( s ) ~ c o n s t  (54) 
(12(t)) [ a if F ( s ) ~ -  s -1 

Using Eq. (50) we may derive the corresponding q~(k,s) for each 6(s) of 
Section 3. We recover the localization, diffusion, and wave (coherent) 
behavior which were derived in Section 4, and here we did not have to 
specify a particular form for 't'(l, t) as in Eqs. (27a) and (34). 

5. C O N C L U S I O N S  

We have considered continuous-time random walks on lattices gov- 
erned by a memory [the waiting time distribution ~t'(1, t)] and shown under 
what conditions the memory will remain coupled in space and time. A 
larger class of behavior is possible when the memory asymptotically re- 
mains coupled in space and time with interesting cases occurring when the 
spatial and temporal moments of the memory are infinite. We showed that 
with a coupled memory a finite mean waiting time is neither necessary nor 
sufficient to lead to long time diffusive behavior. We stressed the realization 
~ ( l , t ) =  ~(t)p(llt) ,  where ~b(t) governed the time between events and 
p(l] t) governed the jump displacement given the knowledge of when the 
last jump occurred. However, in our generalized master equation approach 
we worked directly with the memory kernel M(l,  t) and did not need to 
resort to a particular realization. 

A simple example where a coupled memory appears naturally con- 
cerns a particle being scattered at random times in random directions with 
a constant velocity between collisions. The longer the time between scatter- 
ing events the longer will be the mean free path. If the mean time between 
collisions is infinite then wave motion will result. This is in contrast to a 
decoupled memory random walk where an infinite mean time between 
jumps leads to a localized behavior. 

It is possible that the random process will pass through several interest- 
ing stages before reaching its final asymptotic form. For example, Klafter 
and Silbey (153 have shown that  in the case of a one-dimensional exciton 
interacting with local stochastic fluctuations "~(k,s) can be derived with 
F ( s ) ~  - ( s  + A)- i ,  A being a constant. A crossover from wave behavior 
[ r ( s ) ~  - s - t ,  Is[ >> A] to diffusive behavior [ F ( s ) ~  - A -~, ]s[ << A] oc- 
curs. The crossover behavior of other random processes derived from 
physical considerations will be investigated, where the crossover is intrinsic 
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or induced by varying external parameters. Different classes of d(t) and the 
statistics they generate will also be investigated. 
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